Masterarbeit

Markus Müller

Inhaltsverzeichnis

Kapitel 1. Basics of commutative algebra 4

1. Notations and motivation 4
2. Graded structures 5
3. Graded ideals 6
4. More on modules 7
5. Gröbner Bases 10
Kapitel 2. Dimension Theory 12
6. The Hilbert function and the Hilbert series 12

KAPITEL 1

Basics of commutative algebra

1. Notations and motivation

We start with a chapter on basic constructions in commutative algebra. In this work, every ring $R=(R,+, \cdot)$ is assumed to be commutative and have a unity.

Definition 1. Let R be a ring. A set M is called R-module if $(M,+)$ is an abelian group with a scalar multiplication $R \times M \rightarrow M,(r, m) \rightarrow$ $r \cdot m$ satisfying

- $\left(r_{1} \cdot r_{2}\right) \cdot m=r_{1} \cdot\left(r_{2} \cdot m\right) \quad \forall r_{1}, r_{2} \in R \forall m \in M$
- $\left(r_{1}+r_{2}\right) \cdot m=r_{1} \cdot m+r_{2} \cdot m \quad \forall r_{1}, r_{2} \in R \forall m \in M$
- $r \cdot\left(m_{1}+m_{2}\right)=r \cdot m_{1}+r \cdot m_{2} \quad \forall r \in R \forall m_{1}, m_{2} \in M$

A submodule of M is a subset $N \subseteq M$ which is a R-module itself.
Remark 1. Every ring R is a R-module, and every ideal I of a ring R is a R-module. In the case that $R=k$ is a field, M is a vector space.

The theory of modules is much harder than the theory of vector spaces. Indeed, a module does not have to possess a basis.
In the most cases, we will consider (polynomial) rings and ideals of rings. By regarding those as modules, we can apply the theory of modules to them.

Definition 2. Let k be a field and $R=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring.
(1) A grading on R is a function deg : $\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \mathbb{N} /\{0\} . R$ is called standard graded if deg $\equiv 1$.
(2) A monomial of R is a product $x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots \cdots x_{n}^{\alpha_{n}}$ with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$. Given a grading, we define $\operatorname{deg}\left(x^{\alpha}\right):=$ $\sum_{k=1}^{n} \alpha_{k} \operatorname{deg}\left(x_{k}\right)$ as the degree of x^{α}.
(3) For a $p \in R$, we define $\operatorname{deg}(p)$ to be the highest degree of any term in the polynomial. The elements of degree 0 are exactly the elements of k. For computational reasons, $0 \in R$ has arbitrary degree.
(4) For a given $i \geq 0$, denote by R_{i} the vector space spanned by all monomials of degree i.
(5) A polynomial $p \in R$ is called homogeneous if all of its terms have the same degree. 0 is a homogeneous polynomial of any degree.

Proposition 1. Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ and R_{i} defined as above.
(1) For given $i, j \in \mathbb{N}, R_{i} R_{j} \subseteq R_{i+j}$.
(2) If $p, q \in R$ are homogeneous, $\operatorname{deg}(p q)=\operatorname{deg}(p)+\operatorname{deg}(q)$.
(3) Every $p \in R$ can be written uniquely as finite sum $\sum_{i \geq 0} p_{i}$ with $p_{i} \in R_{i}$.

Beweis. Trivial.
Remark 2. The unique p_{i} in the above proposition are called homogeneous components of degree i. By the proposition, they are well defined. We therefore get a decomposition $R=\bigoplus_{i \geq 0} R_{i}$, where R is regarded as a k-vector space.

2. Graded structures

Definition 3. Let k be a field.
(1) A ring R is called graded ring if there exist abelian groups $\left\{G_{i}=\left(G_{i},+\right) ; i \in \mathbb{N}\right\}$ satisfying $R=\bigoplus_{i \geq 0} G_{i}$ and $G_{i} G_{j} \subseteq G_{i+j}$ for all $i, j \in \mathbb{N}$.
(2) A R-algebra A is called graded algebra if it is graded as a ring.
(3) Let $R=\bigoplus_{i \geq 0} R_{i}$ be a graded ring. An R-module M is called $\boldsymbol{g r a}$ ded module if there is a set of additive subgroups $\left\{M_{i}, i \in \mathbb{N}\right\}$ of $(M,+)$ satisfying $M=\bigoplus_{i \geq 0} M_{i}$ and $R_{i} M_{j} \subseteq M_{i+j}$ for all $i, j \in \mathbb{N}$.
(4) A R-submodule N of a graded module $M=\bigoplus_{i \geq 0} M_{i}$ is called graded submodule if

$$
N=\bigoplus_{i \geq 0} N \cap M_{i} .
$$

(5) An element of G_{i} resp. M_{i} is called homogeneous of degree i.

Remark 3. If M is a graded R-module and M has the decomposition $M=\bigoplus_{i \geq 0} M_{i}$, the M_{i} are R-modules. In the case that $R=k$ is a field,
the M_{i} are vector spaces. We will encounter this situation when we consider k-algebras.

Example 1. Let R be a graded ring.
(1) Given a field k, the polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ is a graded $k\left[x_{1}, \ldots, x_{n}\right]$-module.
(2) Direct sums of graded R-modules are graded R-modules again.
(3) R is a graded R-module.
(4) $R^{n}=R \oplus \cdots \oplus R$ (n times) is a graded R-module.
(5) If S is a multiplicatively closet subset of homogeneous elements of R, then the localization R_{S} is a graded ring.

3. Graded ideals

By considering ideals of rings, one may ask how the ideal may inherit the grading of the respective ring.

Definition 4. Let R be a graded ring. An ideal I of R is called graded ideal if it is graded as a submodule of R.

Proposition 2. Let M be a graded R-module and N be a R-submodule of $M=\bigoplus_{i \geq 0} M_{i}$. The following are equivalent
(1) N is a graded R-submodule of M.
(2) $N=\sum_{i \geq 0} N \cup M_{i}$.
(3) All homogeneous components of elements of N are in N.
(4) N is generated by homogeneous elements.

Beweis. (1) $\Leftrightarrow(2)$: Trivial, since $M=\bigoplus_{i \geq 0} M_{i}$.
$(2) \Rightarrow(3)$: The homogeneous components of elements of N are exactly those in the sets $N \cup M_{i}$.
$(3) \Rightarrow(4): N$ is generated by all homogeneous components of elements of N, since they are all in N.
 components and J is an index set. Then

$$
\sum_{i \geq 0} N \cup M_{i} \subseteq N=\sum_{j \in J} R n_{j} \subseteq \sum_{i \geq 0} N \cup M_{i} .
$$

Remark 4. Let k be a field and $R=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in over k in n indeterminates.
(1) It is well known that R is noetherian, s.t. every ideal of R is finitely generated, which follows from Hilberts basis theorem. Suppose that R is graded as defined in section 1. The graded ideals of R are exactly the ideals that are generated by a finite number of homogeneous polynomials in R, i.e. polynomials where each term has the same degree.
(2) Every monomial ideal (i.e. an ideal that is generated by monomials) of R is graded, since every monomial ideal is homogeneous.

Example 2. Suppose $R=\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]$ and $\operatorname{deg}\left(x_{i}\right)=i$ for $i \in$ $\{1,2,3\}$. Then R is graded via

$$
R_{i}:=\langle p \text { monomial in } R, \operatorname{deg}(p)=i\rangle_{\mathbb{Q}} .
$$

Therefore, the ideal $I:=\left\langle x_{2}^{3}-x_{1}^{3} x_{3}\right\rangle$ is graded, while $J:=\left\langle x_{2}^{3}-x_{3}^{3}\right\rangle$ is not.

4. More on modules

4.1. Graded module homomorphisms.

Definition 5. Let M, N be R-modules. A map $f: M \rightarrow N$ is called a R-module homomorphism if

$$
\begin{gathered}
f(x+y)=f(x)+f(y), \\
f(r x)=r f(x)
\end{gathered}
$$

for all $r \in R$ and all $x, y \in M$.
It is well known that compositions of R-module homomorphisms are again R-module homomorphisms and the set $\operatorname{Hom}(M, N)$ of R-module homomorphisms $M \rightarrow N$ is a R-module itself, where the operations $f+g$ and $r \cdot f$ are defined naturally.
Definition 6. Let $M=\bigoplus_{i \geq 0} M_{i}$ and $N=\bigoplus_{i \geq 0} N_{i}$ be graded R-modules and $f: M \rightarrow N$ be a R-module homomorphism.
(1) f is said to have degree i if $f\left(M_{j}\right) \subseteq N_{i+j}$ for all $j \geq 0$.
(2) The set of all homomorphisms $M \rightarrow N$ of degree i is denoted by $\operatorname{Hom}_{i}(M, N)$.
(3) A homomorphism $f: M \rightarrow N$ is called graded, if $f \in$ $\operatorname{Hom}_{i}(M, N)$ for some $i \in \mathbb{Z}$.

For computational reasons, graded homomorphisms of degree 0 are important, making the computation of dimensions easier. We therefore give an easy way to transform a graded homomorphisms of any degree to a degree 0 homomorphism.

Definition 7. Let $M=\bigoplus_{i \geq 0} M_{i}$ be a graded R-module. Define $M(-p)$ to be the graded R-module that is shifted by p degrees, i.e.

$$
M(-p)_{j}=M_{j-p} .
$$

In this definition, $M_{j}=0$ for $j<0$.
Suppose now that we are given a graded module homomorphism f : $M \rightarrow N$ of degree p. Then there exists a homomorphism $f^{\prime}: M(-p) \rightarrow$ N of degree 0 with...
Example 3. Let $R=k\left[x_{1}, x_{2}, x_{3}\right]$ with grading $\operatorname{deg}\left(x_{i}\right)=i$ for $i \in$ $\{1,2,3\}$ and A be the matrix $A:=\left(\begin{array}{ll}x_{2}^{3} & x_{3}\end{array}\right)$.
(1) The homomorphism $R \oplus R \xrightarrow{A} R$ is not graded. Suppose we have a pair $(a, b)^{T} \in(R \oplus R)_{i}$, then $A \cdot(a, b)^{T}=a x_{2}^{3}+b x_{3} \notin R_{j}$ for all $j \in \mathbb{N}$.
(2) The homomorphism $R(-3) \oplus R \xrightarrow{A} R$ has degree 3 and is therefore graded. Suppose that $(a, b)^{T} \in(R(-3) \oplus R)_{i}$, then $A \cdot(a, b)^{T}=a x_{2}^{3}+b x_{3} \in R_{i+3}$.
(3) The homomorphism $R(-6) \oplus R(-3) \xrightarrow{A} R$ has degree 0 and is therefore graded. Suppose that $(a, b)^{T} \in(R(-3) \oplus R)_{i}$, then $A \cdot(a, b)^{T}=a x_{2}^{3}+b x_{3} \in R_{i}$.
4.2. The structure theorem for finitely generated graded modules. We want to show briefly that every finitely generated graded R-module is isomorphic with degree 0 to a quotient module M / M^{\prime}, where M is a finite sum of shifted R-modules and M^{\prime} is a graded submodule of M.
Proposition 3. Let M be a graded R-module. Then there exists a system of homogeneous generators of M.

Beweis. Let G be a system of generators of M. By Proposition 2 , all homogeneous components of all generators are in M themselves. Therefore, the set of all homogeneous components of elements of G generate M as a R-module.
Proposition 4. Let M, N be graded R-modules and $f: M \rightarrow N$ be a graded homomorphism, and let $m \in M$ have the unique representation into homogeneous components $m=m_{a_{1}}+\cdots+m_{a_{k}}$. Then $f\left(m_{a_{1}}\right), \ldots, f\left(m_{a_{k}}\right)$ are the homogeneous components of $f(m)$.

Beweis. We have

$$
f(m)=f\left(m_{a_{1}}\right)+\cdots+f\left(m_{a_{k}}\right),
$$

and since f is graded, $f\left(m_{a_{i}}\right)$ is homogeneous for $1 \leq i \leq k$.

Proposition 5. Let $f: M \rightarrow N$ be a graded R-module homomorphism. Then $\operatorname{ker}(f):=\{m \in M: f(m)=0\}$ is a graded submodule of M.

Beweis. Suppose that $m \in \operatorname{ker}(f)$ and m has the representation into homogeneous components $m=m_{a_{1}}+\cdots+m_{a_{k}}$. Then $0=$ $f\left(m_{a_{1}}\right)+\cdots+f\left(m_{a_{k}}\right)$, and by Proposition 3, all of these summands are homogeneous, therefore 0 . So $f\left(m_{a_{1}}\right), \ldots, f\left(m_{a_{k}}\right) \in \operatorname{ker}(f)$ and by Proposition 2, $\operatorname{ker}(f)$ is graded.
Now we can state and prove the structure theorem.
Theorem 1. Let $N=\bigoplus_{i \geq 0} N_{i}$ be a finitely generated graded R-module. Then there exists a graded isomorphism of degree 0 (i.e. a graded bijective homomorphsm) $f: N \rightarrow M / M^{\prime}$, where M is a finite direct sum of shifted R-modules and M^{\prime} is a graded submodule of N.

Beweis. Choose a (finite) system $\left\{n_{1}, \ldots, n_{k}\right\}$ of homogeneous generators of N and suppose $n_{i} \in N_{d_{i}}$ for $1 \leq i \leq k$. Set

$$
M:=R\left(-d_{1}\right) \oplus \cdots \oplus R\left(-d_{k}\right) .
$$

As a finite direct sum of graded R-modules, M is graded module. If 1 is the unity in R, the element $1 \in R\left(-d_{i}\right)$ has degree d_{i}, we call it e_{i}. The homomorphism

$$
f^{\prime}: M \rightarrow N, e_{i} \mapsto n_{i}
$$

is a graded R-module homomorphism of degree 0 . Chosing $M^{\prime}=\operatorname{ker}(f)$ (which is graded as a submodule by Proposition 5), the isomorphy follows from the homomorphism theorem for modules.

4.3. Exact sequences.

Definition 8. A sequence of R-modules and R-module-homomorphisms

$$
\ldots \xrightarrow{f_{i-1}} M_{i-1} \xrightarrow{f_{i}} M_{i} \xrightarrow{f_{i+1}} M_{i+1} \xrightarrow{f_{i+2}} \ldots
$$

is exact at M_{i} if $f_{i}\left(M_{i-1}\right)=\operatorname{ker}\left(f_{i+1}\right)$. The sequence is called exact, if it is exact at every M_{i}.
There are some easy exact sequences, that only consist of only three nontrivial modules, namely the exact sequence

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0
$$

where $f_{1}: M_{1} \rightarrow M_{2}$ is injective and $f_{2}: M_{2} \rightarrow M_{3}$ is surjective.

Given an exact sequence of R-modules

$$
0 \xrightarrow{f_{1}} M_{1} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n}} M_{n} \xrightarrow{f_{n+1}} 0,
$$

we can decompose this sequence into n short exact sequences via

$$
0 \rightarrow \operatorname{ker}\left(f_{i+1}\right) \rightarrow M_{i} \xrightarrow{f_{i+1}} \operatorname{Im}\left(f_{i+1}\right) \rightarrow 0
$$

for $0 \leq i \leq n-1$.
On the other hand, given these n short exact sequences, one may merge them to a long one.

Definition 9. Let C be a category of R-modules. A map $\lambda: C \rightarrow \mathbb{Z}$ is called additive, if for every short exact sequence of R-modules in C given by $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$, we have $\lambda\left(M_{2}\right)=\lambda\left(M_{1}\right)+\lambda\left(M_{3}\right)$.
Example 4. Let C be the category of the finite dimensional vector spaces over a field k. Then $\lambda: C \rightarrow \mathbb{Z}, \lambda(M)=\operatorname{dim}_{k} M$ is an additive function.

Proposition 6. Let C be a category of R-modules and $\lambda: C \rightarrow \mathbb{Z}$ be an additive function. Suppose we are given an exact sequence

$$
0 \xrightarrow{f_{1}} M_{1} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n}} M_{n} \xrightarrow{f_{n} 1} 0,
$$

where $M_{i} \in C$, then

$$
\sum_{i=1}^{n}(-1)^{i} \lambda\left(M_{i}\right)=0
$$

Beweis. Decomposing the exact sequence into short exact sequences $0 \rightarrow \operatorname{ker}\left(f_{i+1}\right) \rightarrow M_{i} \rightarrow \operatorname{Im}\left(f_{i+1}\right)$ for $2 \leq i \leq n+1$. By the additivity of λ, \ldots

5. Gröbner Bases

Gröbner bases are certain generating systems for ideals of the polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$. Since this works main emphasis is not on Gröbner bases, we will omit the proofs (which can be found in every standard book about commutative algebra).

5.1. Monomial order.

Definition 10. A monomial order on $R=k\left[x_{1}, \ldots, x_{n}\right]$ is a relation \prec on \mathbb{N}^{n} satisfying
(1) a well-order, i.e. a total order on R where every nonempty subset has a smallest element,
(2) $\alpha \prec \beta \Rightarrow \alpha+\gamma \prec \beta+\gamma \quad \forall \alpha, \beta, \gamma \in \mathbb{N}^{n}$.

To an element $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ we can always consider the monomial $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$. It is therefore suited to call such an order monomial.

Example 5. (1) The relation $\prec_{\text {lex }}$ on \mathbb{N}^{n} is defined by
$\alpha \prec_{\operatorname{lex}} \beta: \Leftrightarrow$ the leftmost coordinate of $\alpha-\beta$, which is not 0 , is negative.
This is a monomial order on \mathbb{N}^{n}, called lexicographic order.
(2) The relation $\prec_{\text {deglex }}$ on \mathbb{N}^{n} is defined by

$$
\alpha \prec_{\operatorname{deglex}} \beta: \Leftrightarrow \sum_{i=1}^{n} \alpha_{i} \leq \sum_{i=1}^{n} \beta_{n} \text { or } \sum_{i=1}^{n} \alpha_{i}=\sum_{i=1}^{n} \beta_{n} \text { and } \alpha \prec_{\text {lex }} \beta .
$$

This is a monomial order on \mathbb{N}^{n}, called graded lexicographic order.

Given a monomial order \prec on \mathbb{N}^{n}, every polynomial has a unique term that is bigger than the other terms with respect to the chosen monomial order. The next definition is therefore well-defined.

Definition 11. Denote by p a polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$ with $p=$ $\sum_{\alpha \in \mathbb{N}^{n}} p_{\alpha} x^{\alpha}$ and let \prec be a monomial order on \mathbb{N}.
(1) The multidegree mdeg (p) of p is defined as max $\left(\alpha: p_{\alpha} \neq 0\right)$.
(2) The leading monomial LM (p) of p is $x^{\operatorname{mdeg}(p)}$.
(3) The leading coefficient $\mathrm{LC}(p)$ of p is $p_{\mathrm{mdeg}(p)}$.
(4) The leading monomial LT (p) of p is $L C(p) \cdot L M(p)$.
5.2. The division algorithm on $k\left[x_{1}, \ldots, x_{n}\right]$. It is well known that there is a division algorithm on $K\left[x_{1}\right]$ with the lexicograpic order on \mathbb{N}. We will construct a similar division algorithm on $k\left[x_{1}, \ldots, x_{n}\right]$. Let p be a polynomial in $R:=k\left[x_{1}, \ldots, x_{n}\right]$ and let p_{1}, \ldots, p_{k} be given polynomials in R. We are interested in descriptions of p in the form

$$
p=p_{1} q_{1}+\ldots p_{k} q_{k}+r
$$

where $q_{1}, \ldots, q_{k}, r \in R$. Clearly, this representation does not have to be unique (even if we want r to fulfil certain criterions).

Proposition 7. Let \prec be a monomial order on \mathbb{N}^{n} and p, p_{1}, \ldots, p_{k} be given polynomials in $R:=k\left[x_{1}, \ldots, x_{n}\right]$. Then there exist $q_{1}, \ldots, q_{k}, r \in$ R with $p=p_{1} q_{1}+\ldots p_{k} q_{k}+r$ and no term of r is divisible by any leading term of p_{1}, \ldots, p_{k}.

Beweis. This theorem is very intuitive. For a proof and the corresponding algorithm, see XXXXX.

Note that the q_{1}, \ldots, q_{k}, r need not be unique.
Gröbner Basen fortfahren

KAPITEL 2

Dimension Theory

1. The Hilbert function and the Hilbert series

Given a graded structure, it is a natural question to ask questions on the nature of the graded components. For a graded ring, these components are abelian groups. In the case of a graded k-algebra, these components are not only abelian groups, but also k-vector spaces.

Definition 12. Let $S=\bigoplus_{i \geq 0} S_{i}$ be a finitely generated graded k algebra. We define the Hilbert function Hilb_{S} by

$$
\operatorname{Hilb}_{S}: \mathbb{N} \rightarrow \mathbb{N}, \quad i \mapsto \operatorname{dim}_{k} S_{i} .
$$

In this definition, the S_{i} are regarded as vector spaces, making the definition well-defined. In the case of graded R-modules, the graded components need not be vector spaces, since we are not working over a field. We will adress this problem later. However, for the most cases, it will suffice to consider graded k-algebras. Furthermore, in the case of S not being finitely generated, we may have infinite dimensional components, which we want to exclude.

Definition 13. Let $S=\bigoplus_{i \geq 0} S_{i}$ be a finitely generated graded k algebra. The Hilbert series $\operatorname{HilbS}_{S}(t)$ of S is the generating function of the dimensions of the S_{i}, i.e.

$$
\operatorname{HilbS}_{S}(t)=\sum_{i \geq 0} \operatorname{Hilb}_{S}(i) t^{i}
$$

Example 6. Let $S:=k[x, y, z]$. We will inspect the Hilbert function of S for different gradings.

- Suppose that S is standard graded. The S_{i} are generated by the monomials of degree i. The number of monomials of degree i is equal to the number of compositions of i into 3 parts (i.e. number of solutions $(a, b, c) \in \mathbb{N}^{3}$ with $a+b+c=i$), which is $\binom{i+2}{i}$. Therefore $\operatorname{Hilb}_{S}(i)=\binom{i+2}{i}$ and

$$
\operatorname{HilbS}_{S}(t)=\sum_{i \geq 0}\binom{i+2}{i} t^{i}=\frac{1}{(1-t)^{3}}
$$

This is no coincidence, as we will see later in this chapter.

- Suppose that S is graded via $\operatorname{deg}(x)=2, \operatorname{deg}(y)=2, \operatorname{deg}(z)=$ 2. Then the Hilbert series is given by

$$
\operatorname{HilbS}_{S}(t)=\sum_{i \geq 0}\binom{i+2}{i} t^{2 i}=\frac{1}{\left(1-t^{2}\right)^{3}} .
$$

- Suppose that S is graded via $\operatorname{deg}(x)=1, \operatorname{deg}(y)=2, \operatorname{deg}(z)=$ 3. The number of monomials of degree i is equal to the number of partitions of i into parts 1,2 and 3 (i.e. the number of nondecreasing sequences $\left(\lambda_{k}\right)_{k=1}^{m}$ with $\lambda_{j} \in\{1,2,3\}$ for $1 \leq j \leq m$ and $\sum_{k=1}^{m} \lambda_{k}=i$ for some m in \mathbb{N}). By elementary combinatorics, we conclude that

$$
\operatorname{HilbS}_{S}(t)=\frac{1}{(1-t)\left(1-t^{2}\right)\left(1-t^{3}\right)}
$$

Because of the last example, the following proposition is easy to prove.
Proposition 8. Let $S:=k\left[x_{1}, \ldots, x_{n}\right]$ with grading $\operatorname{deg}\left(x_{i}\right)=d_{i}$ for $1 \leq i \leq n$. Then

$$
\operatorname{HilbS}_{S}(t)=\frac{1}{\left(1-t^{d_{1}}\right) \cdots \cdots\left(1-t^{d_{n}}\right)}
$$

Those examples give the impression that studying Hilbert functions is quite easy. However, for I being a homogeneous ideal of $k\left[x_{1}, \ldots, x_{n}\right]$, computing the Hilbert series of $k\left[x_{1}, \ldots, x_{n}\right] / I$ is a nontrivial problem. We will get back to this problem in chapter 3. Hilberts Theorem gives us the nature of those Hilbert series.

Theorem 2. (Hilbert) Let $S:=k\left[x_{1}, \ldots, x_{n}\right]$ graded via $\operatorname{deg}\left(x_{i}\right)=$ d_{i} and $M=\bigoplus_{i \geq 0} M_{i}$ be a finitely generated graded S-module. In this setting, the M_{i} are vector spaces. The Hilbert series of M is rational, and there exists a polynomial $p(t) \in \mathbb{Z}[t]$ satisfying

$$
\operatorname{HilbS}_{M}(t)=\frac{p(t)}{\left(1-t^{d_{1}}\right) \ldots\left(1-t^{d_{n}}\right)}
$$

Beweis. Induction on n. For $n=0, M$ is a vector space and $\operatorname{HilbS}_{M}(t)$ is a polynomial.
Suppose the claim holds for all finitely generated graded $k\left[x_{1}, \ldots, x_{n-1}\right]$ modules. The multiplication with x_{n} is a S-module-homomorphism $M_{j} \rightarrow M_{j+d_{n}}$ for all j, it is even a vector space homomorphism.

