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KAPITEL 1

Basics of commutative algebra

1. Notations and motivation

We start with a chapter on basic constructions in commutative algebra.
In this work, every ring R = (R,+, ·) is assumed to be commutative
and have a unity.

Definition 1. Let R be a ring. A set M is called R-module if (M,+)
is an abelian group with a scalar multiplication R×M →M , (r,m)→
r ·m satisfying

• (r1 · r2) ·m = r1 · (r2 ·m) ∀r1, r2 ∈ R ∀m ∈M
• (r1 + r2) ·m = r1 ·m+ r2 ·m ∀r1, r2 ∈ R ∀m ∈M
• r · (m1 +m2) = r ·m1 + r ·m2 ∀r ∈ R ∀m1,m2 ∈M

A submodule of M is a subset N ⊆M which is a R-module itself.

Remark 1. Every ring R is a R-module, and every ideal I of a ring R
is a R-module. In the case that R = k is a field, M is a vector space.

The theory of modules is much harder than the theory of vector spaces.
Indeed, a module does not have to possess a basis.
In the most cases, we will consider (polynomial) rings and ideals of
rings. By regarding those as modules, we can apply the theory of mo-
dules to them.

Definition 2. Let k be a field and R = k [x1, . . . , xn] be the polyno-
mial ring.

(1) A grading on R is a function deg : {x1, . . . , xn} → N/ {0}. R
is called standard graded if deg ≡ 1.

(2) A monomial of R is a product xα := xα1
1 · · · · · xαn

n with
α = (α1, . . . , αn) ∈ Nn. Given a grading, we define deg (xα) :=
n∑
k=1

αkdeg (xk) as the degree of xα.

(3) For a p ∈ R, we define deg (p) to be the highest degree of any
term in the polynomial. The elements of degree 0 are exact-
ly the elements of k. For computational reasons, 0 ∈ R has
arbitrary degree.

4
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(4) For a given i ≥ 0, denote by Ri the vector space spanned by
all monomials of degree i.

(5) A polynomial p ∈ R is called homogeneous if all of its terms
have the same degree. 0 is a homogeneous polynomial of any
degree.

Proposition 1. Let R = k [x1, . . . , xn] and Ri defined as above.

(1) For given i, j ∈ N, RiRj ⊆ Ri+j.
(2) If p, q ∈ R are homogeneous, deg (pq) = deg (p) + deg (q).
(3) Every p ∈ R can be written uniquely as finite sum

∑
i≥0

pi with

pi ∈ Ri.

Beweis. Trivial. �

Remark 2. The unique pi in the above proposition are called ho-
mogeneous components of degree i. By the proposition, they are
well defined. We therefore get a decomposition R =

⊕
i≥0

Ri, where R is

regarded as a k-vector space.

2. Graded structures

Definition 3. Let k be a field.

(1) A ring R is called graded ring if there exist abelian groups
{Gi = (Gi,+) ; i ∈ N} satisfying R =

⊕
i≥0

Gi and GiGj ⊆ Gi+j

for all i, j ∈ N.
(2) A R-algebra A is called graded algebra if it is graded as a

ring.
(3) Let R =

⊕
i≥0

Ri be a graded ring. An R-module M is called gra-

ded module if there is a set of additive subgroups {Mi, i ∈ N}
of (M,+) satisfying M =

⊕
i≥0

Mi and RiMj ⊆ Mi+j for all

i, j ∈ N.
(4) A R-submodule N of a graded module M =

⊕
i≥0

Mi is called

graded submodule if

N =
⊕
i≥0

N ∩Mi.

(5) An element of Gi resp. Mi is called homogeneous of degree
i.

Remark 3. If M is a graded R-module and M has the decomposition
M =

⊕
i≥0

Mi, the Mi are R-modules. In the case that R = k is a field,
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the Mi are vector spaces. We will encounter this situation when we
consider k-algebras.

Example 1. Let R be a graded ring.

(1) Given a field k, the polynomial ring k [x1, . . . , xn] is a graded
k [x1, . . . , xn]-module.

(2) Direct sums of graded R-modules are graded R-modules again.
(3) R is a graded R-module.
(4) Rn = R⊕ · · · ⊕R (n times) is a graded R-module.
(5) If S is a multiplicatively closet subset of homogeneous elements

of R, then the localization RS is a graded ring.

3. Graded ideals

By considering ideals of rings, one may ask how the ideal may inherit
the grading of the respective ring.

Definition 4. Let R be a graded ring. An ideal I of R is called graded
ideal if it is graded as a submodule of R.

Proposition 2. LetM be a gradedR-module andN be aR-submodule
of M =

⊕
i≥0

Mi. The following are equivalent

(1) N is a graded R-submodule of M .
(2) N =

∑
i≥0

N ∪Mi.

(3) All homogeneous components of elements of N are in N .
(4) N is generated by homogeneous elements.

Beweis. (1) ⇔ (2): Trivial, since M =
⊕
i≥0

Mi.

(2) ⇒ (3): The homogeneous components of elements of N are exactly
those in the sets N ∪Mi.
(3) ⇒ (4): N is generated by all homogeneous components of elements
of N , since they are all in N .
(4) ⇒ (2): Suppose N = 〈nj, j ∈ J〉R where the nj are homogeneous
components and J is an index set. Then∑

i≥0

N ∪Mi ⊆ N =
∑
j∈J

Rnj ⊆
∑
i≥0

N ∪Mi.

�

Remark 4. Let k be a field and R = k [x1, . . . , xn] be the polynomial
ring in over k in n indeterminates.
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(1) It is well known that R is noetherian, s.t. every ideal of R is
finitely generated, which follows from Hilberts basis theorem.
Suppose that R is graded as defined in section 1. The graded
ideals of R are exactly the ideals that are generated by a finite
number of homogeneous polynomials in R, i.e. polynomials
where each term has the same degree.

(2) Every monomial ideal (i.e. an ideal that is generated by mo-
nomials) of R is graded, since every monomial ideal is homo-
geneous.

Example 2. Suppose R = Q [x1, x2, x3] and deg (xi) = i for i ∈
{1, 2, 3}. Then R is graded via

Ri := 〈p monomial in R, deg (p) = i〉Q .
Therefore, the ideal I := 〈x32 − x31x3〉 is graded, while J := 〈x32 − x33〉 is
not.

4. More on modules

4.1. Graded module homomorphisms.

Definition 5. Let M,N be R-modules. A map f : M → N is called
a R-module homomorphism if

f (x+ y) = f (x) + f (y) ,

f (rx) = rf (x)

for all r ∈ R and all x, y ∈M .

It is well known that compositions of R-module homomorphisms are
again R-module homomorphisms and the set Hom (M,N) of R-module
homomorphisms M → N is a R-module itself, where the operations
f + g and r · f are defined naturally.

Definition 6. Let M =
⊕
i≥0

Mi and N =
⊕
i≥0

Ni be graded R-modules

and f : M → N be a R-module homomorphism.

(1) f is said to have degree i if f (Mj) ⊆ Ni+j for all j ≥ 0.
(2) The set of all homomorphisms M → N of degree i is denoted

by Homi (M,N).
(3) A homomorphism f : M → N is called graded , if f ∈

Homi (M,N) for some i ∈ Z.

For computational reasons, graded homomorphisms of degree 0 are
important, making the computation of dimensions easier. We therefore
give an easy way to transform a graded homomorphisms of any degree
to a degree 0 homomorphism.
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Definition 7. Let M =
⊕
i≥0

Mi be a graded R-module. Define M (−p)

to be the graded R-module that is shifted by p degrees, i.e.

M (−p)j = Mj−p.

In this definition, Mj = 0 for j < 0.

Suppose now that we are given a graded module homomorphism f :
M → N of degree p. Then there exists a homomorphism f ′ : M(−p)→
N of degree 0 with...

Example 3. Let R = k [x1, x2, x3] with grading deg (xi) = i for i ∈
{1, 2, 3} and A be the matrix A := (x32 x3).

(1) The homomorphism R ⊕ R
A→ R is not graded. Suppose we

have a pair (a, b)T ∈ (R⊕R)i, then A·(a, b)T = ax32+bx3 /∈ Rj

for all j ∈ N.

(2) The homomorphism R (−3) ⊕ R
A→ R has degree 3 and is

therefore graded. Suppose that (a, b)T ∈ (R (−3)⊕R)i, then

A · (a, b)T = ax32 + bx3 ∈ Ri+3.

(3) The homomorphism R (−6)⊕R (−3)
A→ R has degree 0 and is

therefore graded. Suppose that (a, b)T ∈ (R (−3)⊕R)i, then

A · (a, b)T = ax32 + bx3 ∈ Ri.

4.2. The structure theorem for finitely generated graded
modules. We want to show briefly that every finitely generated graded
R-module is isomorphic with degree 0 to a quotient module M/M ′,
where M is a finite sum of shifted R-modules and M ′ is a graded
submodule of M .

Proposition 3. Let M be a graded R-module. Then there exists a
system of homogeneous generators of M .

Beweis. Let G be a system of generators of M . By Proposition
2, all homogeneous components of all generators are in M themselves.
Therefore, the set of all homogeneous components of elements of G
generate M as a R-module. �

Proposition 4. Let M,N be graded R-modules and f : M → N
be a graded homomorphism, and let m ∈ M have the unique repre-
sentation into homogeneous components m = ma1 + · · · + mak . Then
f (ma1) , . . . , f (mak) are the homogeneous components of f (m).

Beweis. We have

f (m) = f (ma1) + · · ·+ f (mak) ,

and since f is graded, f (mai) is homogeneous for 1 ≤ i ≤ k. �
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Proposition 5. Let f : M → N be a graded R-module homomor-
phism. Then ker (f) := {m ∈M : f (m) = 0} is a graded submodule of
M .

Beweis. Suppose that m ∈ ker (f) and m has the representati-
on into homogeneous components m = ma1 + · · · + mak . Then 0 =
f (ma1) + · · · + f (mak), and by Proposition 3, all of these summands
are homogeneous, therefore 0. So f (ma1) , . . . , f (mak) ∈ ker (f) and by
Proposition 2, ker (f) is graded. �

Now we can state and prove the structure theorem.

Theorem 1. Let N =
⊕
i≥0

Ni be a finitely generated graded R-module.

Then there exists a graded isomorphism of degree 0 (i.e. a graded bi-
jective homomorphsm) f : N →M/M ′, where M is a finite direct sum
of shifted R-modules and M ′ is a graded submodule of N .

Beweis. Choose a (finite) system {n1, . . . , nk} of homogeneous ge-
nerators of N and suppose ni ∈ Ndi for 1 ≤ i ≤ k. Set

M := R (−d1)⊕ · · · ⊕R (−dk) .
As a finite direct sum of graded R-modules, M is graded module. If 1
is the unity in R, the element 1 ∈ R (−di) has degree di, we call it ei.
The homomorphism

f ′ : M → N, ei 7→ ni
is a graded R-module homomorphism of degree 0. Chosing M ′ = ker (f)
(which is graded as a submodule by Proposition 5), the isomorphy
follows from the homomorphism theorem for modules.

�

4.3. Exact sequences.

Definition 8. A sequence ofR-modules andR-module-homomorphisms

· · · fi−1→ Mi−1
fi→Mi

fi+1→ Mi+1
fi+2→ . . .

is exact at Mi if fi (Mi−1) = ker (fi+1). The sequence is called exact,
if it is exact at every Mi.

There are some easy exact sequences, that only consist of only three
nontrivial modules, namely the exact sequence

0→M1 →M2 →M3 → 0,

where f1 : M1 →M2 is injective and f2 : M2 →M3 is surjective.
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Given an exact sequence of R-modules

0
f1→M1

f2→ · · · fn→Mn
fn+1→ 0,

we can decompose this sequence into n short exact sequences via

0→ ker (fi+1)→Mi
fi+1→ Im (fi+1)→ 0

for 0 ≤ i ≤ n− 1.
On the other hand, given these n short exact sequences, one may merge
them to a long one.

Definition 9. Let C be a category of R-modules. A map λ : C → Z
is called additive , if for every short exact sequence of R-modules in C
given by 0→M1 →M2 →M3 → 0, we have λ (M2) = λ (M1)+λ (M3).

Example 4. Let C be the category of the finite dimensional vector
spaces over a field k. Then λ : C → Z, λ (M) = dimkM is an additive
function.

Proposition 6. Let C be a category of R-modules and λ : C → Z be
an additive function. Suppose we are given an exact sequence

0
f1→M1

f2→ · · · fn→Mn
fn+1→ 0,

where Mi ∈ C, then

n∑
i=1

(−1)i λ (Mi) = 0.

Beweis. Decomposing the exact sequence into short exact sequences
0 → ker (fi+1) → Mi → Im (fi+1) for 2 ≤ i ≤ n + 1. By the additivity
of λ, ...

�

5. Gröbner Bases

Gröbner bases are certain generating systems for ideals of the poly-
nomial ring k [x1, . . . , xn]. Since this works main emphasis is not on
Gröbner bases, we will omit the proofs (which can be found in every
standard book about commutative algebra).

5.1. Monomial order.

Definition 10. A monomial order on R = k [x1, . . . , xn] is a rela-
tion ≺ on Nn satisfying

(1) a well-order, i.e. a total order on R where every nonempty
subset has a smallest element,
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(2) α ≺ β ⇒ α + γ ≺ β + γ ∀α, β, γ ∈ Nn.

To an element α = (α1, . . . , αn) ∈ Nn we can always consider the
monomial xα = xα1

1 . . . xαn
n . It is therefore suited to call such an order

monomial.

Example 5. (1) The relation ≺lex on Nn is defined by

α ≺lex β :⇔ the leftmost coordinate of α− β, which is not 0, is negative.

This is a monomial order on Nn, called lexicographic order.
(2) The relation ≺deglex on Nn is defined by

α ≺deglex β :⇔
n∑
i=1

αi ≤
n∑
i=1

βn or
n∑
i=1

αi =
n∑
i=1

βn andα ≺lex β.

This is a monomial order on Nn, called graded lexicographic
order.

Given a monomial order ≺ on Nn, every polynomial has a unique term
that is bigger than the other terms with respect to the chosen monomial
order. The next definition is therefore well-defined.

Definition 11. Denote by p a polynomial in k [x1, . . . , xn] with p =∑
α∈Nn

pαx
α and let ≺ be a monomial order on N.

(1) The multidegree mdeg (p) of p is defined as max (α : pα 6= 0).
(2) The leading monomial LM (p) of p is xmdeg(p).
(3) The leading coefficient LC (p) of p is pmdeg(p).
(4) The leading monomial LT (p) of p is LC (p) · LM (p).

5.2. The division algorithm on k [x1, . . . , xn]. It is well known
that there is a division algorithm on K [x1] with the lexicograpic order
on N. We will construct a similar division algorithm on k [x1, . . . , xn].
Let p be a polynomial in R := k [x1, . . . , xn] and let p1, . . . , pk be given
polynomials in R. We are interested in descriptions of p in the form

p = p1q1 + . . . pkqk + r,

where q1, . . . , qk, r ∈ R. Clearly, this representation does not have to
be unique (even if we want r to fulfil certain criterions).

Proposition 7. Let ≺ be a monomial order on Nn and p, p1, . . . , pk be
given polynomials in R := k [x1, . . . , xn]. Then there exist q1, . . . , qk, r ∈
R with p = p1q1+. . . pkqk+r and no term of r is divisible by any leading
term of p1, . . . , pk.

Beweis. This theorem is very intuitive. For a proof and the corre-
sponding algorithm, see XXXXX. �
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Note that the q1, . . . , qk, r need not be unique.

Gröbner Basen fortfahren
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Dimension Theory

1. The Hilbert function and the Hilbert series

Given a graded structure, it is a natural question to ask questions on the
nature of the graded components. For a graded ring, these components
are abelian groups. In the case of a graded k-algebra, these components
are not only abelian groups, but also k-vector spaces.

Definition 12. Let S =
⊕
i≥0

Si be a finitely generated graded k-

algebra. We define the Hilbert function HilbS by

HilbS : N→ N, i 7→ dimk Si.

In this definition, the Si are regarded as vector spaces, making the
definition well-defined. In the case of graded R-modules, the graded
components need not be vector spaces, since we are not working over
a field. We will adress this problem later. However, for the most cases,
it will suffice to consider graded k-algebras. Furthermore, in the case
of S not being finitely generated, we may have infinite dimensional
components, which we want to exclude.

Definition 13. Let S =
⊕
i≥0

Si be a finitely generated graded k-

algebra. The Hilbert series HilbSS (t) of S is the generating function
of the dimensions of the Si, i.e.

HilbSS (t) =
∑
i≥0

HilbS (i) ti.

Example 6. Let S := k [x, y, z]. We will inspect the Hilbert function
of S for different gradings.

• Suppose that S is standard graded. The Si are generated by
the monomials of degree i. The number of monomials of degree
i is equal to the number of compositions of i into 3 parts (i.e.
number of solutions (a, b, c) ∈ N3 with a+ b+ c = i), which is(
i+2
i

)
. Therefore HilbS (i) =

(
i+2
i

)
and

13
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HilbSS (t) =
∑
i≥0

(
i+ 2

i

)
ti =

1

(1− t)3
.

This is no coincidence, as we will see later in this chapter.
• Suppose that S is graded via deg (x) = 2, deg (y) = 2, deg (z) =

2. Then the Hilbert series is given by

HilbSS (t) =
∑
i≥0

(
i+ 2

i

)
t2i =

1

(1− t2)3
.

• Suppose that S is graded via deg (x) = 1, deg (y) = 2, deg (z) =
3. The number of monomials of degree i is equal to the number
of partitions of i into parts 1, 2 and 3 (i.e. the number of non-
decreasing sequences (λk)

m
k=1 with λj ∈ {1, 2, 3} for 1 ≤ j ≤ m

and
m∑
k=1

λk = i for some m in N). By elementary combinatorics,

we conclude that

HilbSS (t) =
1

(1− t) (1− t2) (1− t3)
.

Because of the last example, the following proposition is easy to prove.

Proposition 8. Let S := k [x1, . . . , xn] with grading deg (xi) = di for
1 ≤ i ≤ n. Then

HilbSS (t) =
1

(1− td1) · · · · · (1− tdn)
.

Those examples give the impression that studying Hilbert functions is
quite easy. However, for I being a homogeneous ideal of k [x1, . . . , xn],
computing the Hilbert series of k [x1, . . . , xn] /I is a nontrivial problem.
We will get back to this problem in chapter 3. Hilberts Theorem gives
us the nature of those Hilbert series.

Theorem 2. (Hilbert) Let S := k [x1, . . . , xn] graded via deg (xi) =
di and M =

⊕
i≥0

Mi be a finitely generated graded S-module. In this

setting, the Mi are vector spaces. The Hilbert series of M is rational,
and there exists a polynomial p (t) ∈ Z [t] satisfying

HilbSM (t) =
p (t)

(1− td1) . . . (1− tdn)
.
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Beweis. Induction on n. For n = 0, M is a vector space and
HilbSM (t) is a polynomial.
Suppose the claim holds for all finitely generated graded k [x1, . . . , xn−1]-
modules. The multiplication with xn is a S-module-homomorphism
Mj →Mj+dn for all j, it is even a vector space homomorphism.

�


